Permeando praticamente toda a extensão do Sistema Solar, existem incontáveis objetos que constituem a classe dos corpos menores. Os asteroides, essencialmente rochosos, concentram-se numa faixa entre as órbitas de Marte e Júpiter que se assemelha a um cinturão. Além da órbita do último planeta, a temperatura é suficientemente baixa para permitir a existência de fragmentos de gelo, que se aglomeram sobretudo nas regiões do Cinturão de Kuiper, Disco disperso e na Nuvem de Oort; esporadicamente são desviados para o interior do sistema onde, pela ação do calor do Sol, se transformam em cometas. Muitos corpos, por sua vez, possuem força gravitacional suficiente para manter orbitando em torno de si objetos menores, os satélites naturais, com as mais variadas formas e dimensões. Os planetas gigantes apresentam, ainda, sistemas de anéis planetários, uma faixa composta por minúsculas partículas de gelo e poeira.
O Sistema Solar, de acordo com a teoria mais aceita hoje em dia, teve origem a partir de uma nuvem molecular que, por alguma perturbação gravitacional, entrou em colapso e formou a estrela central, enquanto seus remanescentes geraram os demais corpos. Em sua configuração atual, todos os componentes descrevem órbitas praticamente elípticas ao redor do Sol, constituindo um sistema dinâmico onde os corpos estão em mútua interação mediada sobretudo pela força gravitacional. A sua estrutura tem sido objeto de estudos desde a antiguidade, mas somente há cinco séculos a humanidade reconheceu o fato de que o Sol, e não a Terra, constitui o centro do movimento planetário. Desde então, a evolução dos equipamentos de pesquisa, como telescópios, possibilitou uma maior compreensão do sistema. Entretanto, detalhes sem precedentes foram obtidos somente após o envio de sondas espaciais a todos os planetas, que retornam imagens e dados com uma precisão nunca antes alcançada
Formação[editar | editar código-fonte]

Laplace foi o responsável por desenvolver a hipótese de que o Sol teria se formado a partir de uma nuvem que girava e se contraía e, ao seu redor, os restantes materiais se condensaram nos demais corpos. Essa teoria, comumente referida como hipótese nebular, passou por algumas adaptações e se tornou a mais aceita no meio científico, especialmente após observações recentes da composição de meteoritos, que conservam características do período em que se formaram, nos primórdios do Sistema Solar.[6] [7]
Protoestrela[editar | editar código-fonte]

Com o núcleo da nuvem cada vez mais denso, formou-se uma esfera achatada de gás com temperatura agora atingindo alguns milhares de graus Celsius, uma protoestrela, cujo diâmetro era equivalente ao da órbita atual de Mercúrio. Ao seu redor, a nuvem de gás adquiriu um formato achatado devido ao movimento de rotação, formando um disco denominado nebulosa solar, que se estendia por entre cem e duzentas unidades astronômicas.[nota 3] Ao redor do núcleo a temperatura era relativamente alta, alguns milhares de graus Celsius, ao passo que as áreas mais afastadas registravam temperaturas negativas.[10]
Um milhão de anos se passaram desde o início do colapso da nuvem, quando o protossol já havia encolhido para um raio poucas vezes maior que seu estado atual. Nessa etapa teve início uma das fases mais turbulentas de sua evolução. Em seu interior, a maior parte do gás se encontrava ionizado e a uma temperatura de cerca de cinco milhões de graus Celsius, o que, em associação com a rápida rotação da protoestrela, gerava movimentos de cargas elétricas, originando um campo magnético muito mais intenso que o atual. A instabilidade desse campo provocava violentas movimentações de gás ionizado, tanto da própria protoestrela quanto da nuvem ao seu redor, causando uma intensa variação de brilho, semelhante ao processo que se observa atualmente na estrela variável T Tauri localizada na constelação do Touro. Entre trinta e cinquenta milhões de anos depois, a temperatura no núcleo chegou a quinze milhões de graus Celsius, suficiente para dar início ao processo de fusão nuclear, caracterizando o Sol como uma estrela estável que entrou na sequência principal, convertendo hidrogênio em hélio.[nota 4] [11]
Formação dos planetas e demais corpos[editar | editar código-fonte]

Por força da sua atração gravitacional, estes objetos não só agregaram a matéria que cruzava a sua órbita, mas também colidiram uns com os outros, por vezes fundindo-se e dando origem aos primeiros planetas. Acredita-se que Vênus e a Terra, por exemplo, resultaram da colisão de mais de dez protoplanetas cada um, mas permanece desconhecida a razão pela qual Mercúrio e Marte não incorporaram material na mesma taxa, o que determinou suas dimensões reduzidas. Durante esses impactos, imensas quantidades de energia eram liberadas, formando grandes oceanos de lava por todo o planeta.[12] [13] Colisões também foram responsáveis pelo surgimento de diversos satélites naturais, dentre eles a Lua, que, de acordo com a teoria vigente, resultou dos remanescentes de um choque ocorrido há 4,44 bilhões de anos[nota 1] entre a Terra e Theia, um corpo do tamanho de Marte.[14] [15] Os planetesimais restantes que não eram incorporados aos planetas colidiram entre si, deixando muitos destroços que foram varridos pela gravidade dos planetas.[8] Centenas de milhões de anos depois de o processo ter iniciado, os planetas interiores estavam praticamente formados e o vento e a radiação provenientes do Sol expulsaram as pequenas partículas ainda remanescentes da região, desacelerando o crescimento desses planetas.[16]
Enquanto esse processo transcorria no interior do Sistema Solar, nas regiões mais afastadas da estrela as temperaturas eram baixas o suficiente para permitir a formação de cristais de gelo, muito mais abundantes que os compostos silicatos predominantes nos planetas internos. No entanto, sabe-se que os planetas gigantes Júpiter e Saturno são formados sobretudo por hidrogênio e hélio, que não poderiam existir sob a forma de gelo nessa região. Por isso foram formuladas duas hipóteses para explicar a possível origem desses planetas. A primeira sugere que planetesimais formados de rocha e gelo se fundiram formando planetas com massas de dez a quinze vezes superiores à da Terra, tornando-os suficientemente massivos para atrair e manter os gases presentes na então nebulosa solar, o que justificaria a provável composição atual dos núcleos desses planetas, predominantemente rochosos. Outra teoria sugere a possibilidade de os dois maiores planetas do Sistema Solar terem sido formados diretamente da condensação da nebulosa solar, em um processo semelhante ao que deu origem ao Sol, no qual a presença da enorme quantidade de gás, poeira e gelo possibilitaram a formação de corpos com elevadas dimensões. Urano e Netuno, por sua vez, teriam surgido a partir da agregação de fragmentos de gelo presentes nas regiões mais externas, o que explicaria a fração diferenciada de compostos voláteis que formam tais planetas. Contudo, quando atingiram porte suficiente para absorver gases, tal como ocorreu com Júpiter e Saturno, a nebulosa solar já havia se dissipado, impossibilitando seu eventual crescimento.[17]
Migração planetária e evolução subsequente[editar | editar código-fonte]


Simulação da órbita dos planetas gigantes a) no início; b) durante o intenso bombardeio tardio (ilustra-se igualmente a eventual troca de posição entre Urano e Netuno) e c) após o processo de migração planetária. Note como os objetos além da órbita inicial de Netuno são espalhados.[19]
Apesar de conseguir responder a muitas questões que até então se colocavam, o modelo de Nice originalmente não explicava como puderam os gigantes gasosos formar-se no intervalo de tempo atualmente considerado pela comunidade científica, exigindo várias centenas de milhões de anos para lá deste. Aplicando a lógica do modelo, mas pressupondo que a nebulosa inicial seria mais densa do que a teoria original estimava, mostrou-se que a formação dos planetas exteriores no prazo indicado era exequível. Simulações de computador, respeitando o modelo de Nice, mas partindo de uma nebulosa mais densa, confirmaram a hipótese. No entanto, introduziram igualmente uma possibilidade que não havia sido equacionada: em metade das simulações efetuadas, Netuno formava-se entre Urano e Saturno, sendo progressivamente levado para uma órbita exterior a Urano. Perante a incerteza que as probabilidades registram neste aspecto particular, a hipótese da troca de posição entre os dois planetas mais exteriores mantém-se em aberto.[20] [21]
Componentes[editar | editar código-fonte]
Ver também: Lista de planetas
O Sistema Solar é constituído essencialmente pelo Sol e pelo conjunto de corpos que estão sob influência de seu campo gravitacional. Dentre estes, os oito planetas são os componentes mais massivos do sistema, divididos em planetas telúricos (os quatro menores e mais próximos do Sol, predominantemente rochosos) e gigantes gasosos (os quatro maiores e mais afastados do Sol). A maior parte exerce força gravitacional suficiente para manter uma camada de gases ao seu redor, ou seja, possuem atmosfera, e também satélites naturais orbitando-os. Enquanto a Terra e Marte apresentam somente um e dois satélites naturais respectivamente, os gigantes gasosos possuem dezenas cada um, nas mais variadas formas, composições e tamanhos. Existem ainda cinco corpos que, de acordo com os padrões da União Astronômica Internacional, se enquadram na categoria de planetas anões e que, na sua maioria, também exibem satélites naturais. Vários asteroides se fazem igualmente acompanhar por pequenas luas.[22] Os quatro planetas gigantes possuem, ainda, sistemas de anéis planetários, formados essencialmente por partículas de gelo e poeira com dimensões máximas de alguns centímetros, que orbitam o planeta no plano de seu equador.[23] Espalhados por toda extensão do Sistema Solar existem milhares de corpos menores, como asteroides e cometas, além da poeira interplanetária e de matéria proveniente do Sol que permeiam o espaço entre os corpos.[24] [25] [26]Sol[editar | editar código-fonte]


O Sol em atividade. Note a erupção liberando matéria no espaço, chamada de ejeção de massa coronal.
Dentre as camadas que compõem o Sol, o núcleo, onde ocorrem as reações de fusão, é a mais interna, atingindo uma temperatura de cerca de quinze milhões de graus Celsius. A energia produzida nessa região transfere-se para a zona de radiação, através da qual atinge a camada subsequente, denominada zona convectiva, que, por sua vez, a transporta até a fotosfera, a superfície visível do Sol por onde escapa a radiação que ilumina todo o Sistema Solar. O campo magnético da estrela faz com que surjam manchas (regiões mais escuras na fotosfera) e proeminências solares que, por sua vez, podem dar origem a uma ejeção de massa coronal. Tais eventos estão geralmente associados aos ciclos solares, cujo pico de atividade ocorre a cada onze anos. Circundando o Sol encontram-se a cromosfera e a coroa solar, duas camadas de gases que constituem a atmosfera da estrela, praticamente invisíveis por conta do ofuscamento provocado pelo brilho superficial. Dessa coroa emanam correntes de partículas eletricamente carregadas, a uma temperatura de dois milhões de graus Celsius, responsáveis pelo vento solar que se espalha com grande velocidade e atinge os confins do sistema.[28] [29]
Planetas telúricos[editar | editar código-fonte]

Mercúrio[editar | editar código-fonte]

Vênus/Vénus[editar | editar código-fonte]

A cobertura permanente de nuvens impede a observação direta das características da superfície, pelo que o seu mapeamento é efetuado por meio de radar e de sondas enviadas ao planeta. Tais pesquisas sugerem que o relevo de Vênus foi alterado em quase sua totalidade por ação da atividade vulcânica entre trezentos e quinhentos milhões de anos atrás. Em seu estado atual destacam-se duas regiões elevadas, a Terra de Ishtar e a Terra de Afrodite, além dos Montes Maxwell, um maciço montanhoso onde se localiza o ponto mais alto do planeta, comparável ao Monte Everest na Terra. Na geografia do planeta são igualmente característicos diversos canais que se estendem por milhares de quilômetros, criados por fluxos de lava.[33]
Terra[editar | editar código-fonte]


A Terra fotografada pela Apollo 17.
Nosso planeta possui somente um satélite natural, a Lua. Como praticamente não possui atmosfera nem está sujeita a outros agentes erosivos, a superfície lunar encontra-se coberta por marcas de impacto de outros corpos na forma de inúmeras crateras. Visualmente, a Lua é dividida em duas regiões conforme sua coloração: as terras altas, geralmente mais claras, e os mares, bacias de impacto preenchidas com lava que se mostram mais escuras. O período de rotação do satélite (cerca de 27 dias) é exatamente igual ao período de translação em torno da Terra, o que faz com que a Lua tenha sempre a mesma face voltada para o planeta (fenômeno denominado rotação sincronizada). Dentre as influências que a presença da Lua provoca na Terra, pode-se ressaltar a ocorrência das marés e a estabilidade no eixo de rotação do planeta.[nota 5] [35] . As primeiras sondas para explorar o satélite foram enviadas em 1959 e, dez anos depois, uma missão tripulada veio a realizar uma alunissagem, o que fez da Lua o primeiro e único corpo celeste visitado por humanos até o presente.[36]
Marte[editar | editar código-fonte]

A atmosfera marciana, embora bem mais rarefeita do que a atmosfera terrestre, pode apresentar tempestades globais durante semanas, que levantam a poeira da superfície (rica em minérios de ferro, daí a coloração avermelhada predominante) e alteram completamente as características visuais do planeta. Por vezes formam-se nuvens de vapor de água e neblina sobre vales e crateras, provocando eventuais precipitações sob a forma de neve nas calotas polares. Evidências geológicas sugerem que Marte já foi um planeta rico em água, cuja quantidade teria sido suficiente para escavar os vales existentes atualmente, o que reforça também a possibilidade de o planeta, em determinado momento de sua história, ter abrigado alguma forma de vida. Marte possui dois satélites naturais, Fobos e Deimos, ambos de reduzidas dimensões e formato irregular, tratando-se provavelmente de asteroides capturados pela gravidade do planeta.[39] [38]
Planetas gigantes[editar | editar código-fonte]
Ver também: Planeta gasoso
Os quatro maiores e mais afastados planetas do Sistema Solar formam o grupo dos gigantes gasosos, todos com dimensões consideravelmente superiores às da Terra. Seu tamanho e constituição distinguem-nos dos telúricos, pelo que também recebem a denominação de planetas jovianos, em alusão ao maior componente deste conjunto, Júpiter (ou Jovis).[40] Formados principalmente por hidrogênio e hélio além de uma pequena fração de elementos mais pesados, possuem baixa densidade. Apesar de estarem afastados do Sol, o calor irradiado de seus interiores aliado a sua composição gasosa faz com que suas atmosferas sejam extremamente espessas e turbulentas, não existindo uma superfície definida em tais corpos. Também possuem em comum um núcleo rochoso, possivelmente com dimensões comparáveis ao da Terra, que seria o componente original dos planetas antes da absorção de gases e gelo durante sua formação. Todos eles apresentam igualmente numerosos satélites naturais e sistemas de anéis, além de campos magnéticos. Os dois mais distantes do Sol, Urano e Netuno, são por vezes denominados gigantes de gelo, dada a sua composição diferenciada em relação aos outros planetas gasosos.[31] [41]Júpiter[editar | editar código-fonte]

O número total de satélites naturais de Júpiter excede 60, sendo que os quatro maiores e mais notáveis recebem a denominação particular de luas galileanas, por ter sido Galileu Galilei quem as primeiro observou por meio de um telescópio em 1610. Numa órbita interior à dos outros três, Io é o corpo geologicamente mais ativo do Sistema Solar, com vários vulcões continuamente renovando a matéria em sua superfície.[nota 6] [44] Europa atrai especial atenção devido à expectativa de que alguma forma de vida habite o imenso oceano de água em estado líquido (cujo volume pode exceder o dobro de toda a água da Terra) que se considera existir sob a camada de gelo que envolve a lua. Ganimedes, o maior satélite natural no Sistema Solar e o único que mantém seu próprio campo magnético, ultrapassa as dimensões de Mercúrio. Por fim, a superfície extremamente antiga e repleta de crateras de Calisto é uma recordação visível dos eventos que ocorreram no início da história do Sistema Solar. Outra peculiaridade desses satélites são suas interações gravitacionais; Io, por exemplo, oscila entre a atração gravitacional exercida por Júpiter e a que sofre por parte de Europa e Ganimedes. Tal como acontece com a Lua, que mostra sempre a mesma face voltada para a Terra, também as luas de Galileu apresentam uma rotação sincronizada com Júpiter, provocando o mesmo efeito. O planeta possui ainda um tênue sistema de anéis, de difícil observação por ser formado de minúsculas partículas de baixo albedo.[43] [45]
Saturno[editar | editar código-fonte]

Os satélites naturais de Saturno ostentam peculiaridades únicas no Sistema Solar. O maior deles, Titã, é envolvido por uma espessa atmosfera composta principalmente de nitrogênio, provavelmente similar à da Terra antes do surgimento das primeiras formas de vida. Jápeto possui um hemisfério com coloração brilhante e outro escuro, além de uma cordilheira que se estende exatamente sobre seu equador. Mimas apresenta uma cratera gigantesca resultante de um impacto que quase rompeu o satélite ao meio. Rico em gelo, Encélado mostra indícios de atividade vulcânica, com ejeções de vapor de água no hemisfério sul. No total, Saturno possui 53 satélites naturais, muitos deles descobertos somente através de sondas espaciais.[47]
Urano[editar | editar código-fonte]

Os satélites naturais de Urano, que totalizam 27, foram designados segundo os nomes de personagens das obras de William Shakespeare e da sátira The Rape of the Lock ("O Rapto da Madeixa") de Alexander Pope, exceção à prática mais corrente de se associarem às luas nomes de figuras da mitologia greco-romana. Oberon e Titânia são os maiores corpos que orbitam o planeta, enquanto Ariel tem a superfície mais brilhante e possivelmente a mais recente dentre os satélites de Urano, com poucas crateras de impacto. Miranda, por sua vez, apresenta intrigantes cânions onde áreas cuja superfície parece antiga se estendem ao lado de outras de aspecto recente. Todos estes satélites aparentam ser formados de uma mistura entre rochas e gelo. Os demais corpos ao redor de Urano provavelmente são asteroides capturados pela gravidade do planeta.[49]
Netuno/Neptuno[editar | editar código-fonte]

Dos quatorze satélites naturais conhecidos de Netuno, o maior e mais intrigante é Tritão, que orbita o planeta em direção oposta à dos demais. Apesar de extremamente gelado (com temperaturas inferiores a -230 graus Celsius), apresenta formações semelhantes a gêiseres que expelem gelo da superfície, além de uma tênue atmosfera que, por razões desconhecidas, está se tornando mais quente. Muitas das outras luas são pequenas e escuras, razão pela qual foram descobertas somente após o envio de sondas espaciais. O sistema de anéis do planeta exibe diversas irregularidades, sendo preenchido de forma muito desigual, que não só apresentam indícios de serem recentes como também efêmeras.[50]
Planetas anões[editar | editar código-fonte]

O menor planeta anão e também o mais próximo do Sol, Ceres, situa-se entre as órbitas de Marte e Júpiter, numa região povoada por inúmeros corpos menores denominada Cinturão de Asteroides. Com um formato aproximadamente esférico, Ceres é visto como um planeta embrionário que não atingiu porte suficiente devido provavelmente à influência gravitacional de Júpiter. Possivelmente abriga consideráveis quantidades de água sob a forma de gelo, num manto que envolve seu núcleo denso e rochoso.[53]
Com aproximadamente dois terços do diâmetro da Lua, pensa-se atualmente que Plutão seja formado por um núcleo rochoso cercado por uma espessa camada de gelo. Sua órbita excêntrica faz com que, durante um período de vinte anos, o planeta anão fique mais próximo do Sol que Netuno, sendo então possível a formação de uma tênue e temporária atmosfera resultante da vaporização de compostos anteriormente em estado sólido. Caronte, a maior das suas cinco luas, possui quase metade do tamanho de Plutão, o que leva alguns cientistas a considerarem os dois corpos como um sistema duplo em vez de planeta anão e satélite.[54]
Éris possui dimensões ligeiramente menores que as de Plutão[nota 8] e provavelmente a mesma composição. Originalmente apelidado de Xena, o planeta anão leva mais de quinhentos anos para completar seu período de translação e tem uma pequena lua, Disnomia.[55] Makemake, menor que Éris, contém metano e etano em sua superfície, além de uma coloração avermelhada atribuída à interação desses compostos com a radiação ultravioleta do Sol.[56] E, por fim, Haumea, um planeta anão de tamanho semelhante ao de Plutão, possui um dos mais curtos períodos de rotação do Sistema Solar (menos de quatro horas), o que provocou um alongamento do seu formato, dando-lhe uma aparência similar a uma bola de futebol americano; possui dois satélites naturais, Namaka e Hiʻiaka.[57]
Corpos menores[editar | editar código-fonte]

Asteroides[editar | editar código-fonte]


Vesta, o segundo maior asteroide do Sistema Solar é considerado por vezes um planeta bebê em razão de suas dimensões e sua constituição.
Certos grupos de asteroides compartilham a mesma órbita com um planeta, localizando-se sempre 60° à frente ou atrás nos respectivos pontos de Lagrange[nota 9] deste, formando seu grupo de troianos. Na órbita de Júpiter se encontra o mais expressivo grupo conhecido, com mais de seiscentos mil componentes (de extensão superior a um quilômetro) descobertos.[62] Netuno, Urano, Marte, Terra e Vênus também possuem troianos. O primeiro troiano da Terra, designado de 2010 TK7, foi descoberto recentemente.[61] [63] Entre as órbitas de Júpiter e Netuno existem, ainda, asteroides de outra classe particular cujos componentes se denominam Centauros, que são oriundos da ejeção dos objetos do Cinturão de Kuiper durante a migração planetária. Contudo, ficam nessa região por um tempo relativamente curto, pois suas órbitas ou são alteradas pela gravidade dos planetas gigantes ou colidem com eles.[64]
Alguns dos asteroides que se encontram na zona mais interior do Sistema Solar, aquém do Cinturão de Asteroides, constituem o grupo dos Objetos Próximos da Terra (NEO, sigla de Near Earth Objects), que, como o próprio nome indica, são asteroides cuja órbita aproxima-se substancialmente do nosso planeta. Formalmente os NEO são definidos como corpos cujo periélio ocorre a menos de 1,3 unidade astronômica, e são divididos em classes de acordo com suas características orbitais. O primeiro destes objetos a ser descoberto foi o asteroide Eros, que possui cerca de 33 quilômetros de comprimento. Entretanto, 9 567 objetos já haviam sido catalogados, até fevereiro de 2013, nas vizinhanças da órbita terrestre.[61] [65] [66] [67]
É provável que o evento de extinção em massa dos dinossauros ocorrido há 65 milhões de anos tenha sido causado pelo impacto de um asteroide com cerca de dez quilômetros de extensão, criando uma imensa cratera, o que evidencia o elevado poder de destruição de tais eventos de impacto.[68] Em fevereiro de 2013 existiam 1 376 corpos referenciados por apresentarem um possível, embora extremamente remoto, risco de colisão com a Terra.[67] Em consequência desta possibilidade diversos programas de observação, como o Lincoln Near-Earth Asteroid Research, o Near Earth Asteroid Tracking e o Lowell Observatory Near-Earth-Object Search, entre outros, fazem o monitoramento constante do céu, permitindo a descoberta de diversos corpos que possam representar uma ameaça. Para estimar a probabilidade de colisão foi criada a Escala de Turim, que varia de 0 a 10, onde o menor valor qualifica o risco como insignificante, enquanto o valor máximo representa uma colisão iminente com consequências globais.[69] No entanto, os asteroides nas proximidades também podem ser o primeiro alvo para exploração de minérios fora da Terra, já que, segundo pesquisas, possuem uma considerável quantidade de ouro, platina e outros metais raros em sua composição.[70]
Objetos transnetunianos[editar | editar código-fonte]

Embora possa apresentar uma certa semelhança com o Cinturão de Asteroides, o Cinturão de Kuiper (ou de Kuiper-Edgeworth) é formado por corpos constituídos por fragmentos rochosos em associação com compostos voláteis sob a forma de gelo, distribuídos a uma distância entre 30 e 55 unidades astronômicas do Sol. Foram descobertos até o presente momento milhares de objetos nessa região, mas estimativas sugerem que existam aproximadamente um trilhão[nota 1] de componentes de diâmetro superior a um quilômetro. Dentre os maiores objetos no Cinturão de Kuiper destacam-se os quatro planetas anões Plutão, Haumea, Makemake e Éris.[72] [73]
Os corpos gelados que habitam o disco disperso têm em comum órbitas que, em seu ponto mais próximo, se sobrepõem à região do Cinturão de Kuiper, mas sua distância máxima do Sol é alcançada numa área ainda mais longínqua que o próprio cinturão. Tal região, assim como o Cinturão de Kuiper, é fonte provável de cometas que se desviam para as proximidades do Sol. A órbita altamente inclinada desses corpos em relação ao plano de órbita dos planetas sugere que, durante o período da migração de Netuno, as trajetórias dos objetos que se encontram atualmente nesta área tenham sido radicalmente alteradas. Alguns astrônomos consideram o disco disperso como mera região do Cinturão de Kuiper, identificando seus componentes como objetos dispersos deste.[74] Alguns astrônomos também classificam os Centauros, que se localizam entre as órbitas dos planetas gigantes, como objetos internos do Cinturão de Kuiper, desviados para órbitas mais interiores.[75]
Em 1950, o astrônomo alemão Jan Oort propôs que alguns cometas provêm de uma vasta e extremamente distante região povoada por corpos de gelo, distribuídos numa configuração semelhante a uma concha esférica, que circunda todo o Sistema Solar. Em sua homenagem, esta foi nomeada Nuvem de Oort, encontrando-se no espaço entre cinco mil e cem mil unidades astronômicas de raio a partir do Sol. Nessa região, por conta do efeito reduzido da gravidade do astro central do Sistema Solar, a influência de outras estrelas e da própria galáxia ocasionalmente desvia alguns desses corpos em direção ao meio interestelar ou ao centro do sistema, originando, neste caso, um cometa de longo período. Estima-se que existam entre 0,1 a dois trilhões[nota 1] de corpos de gelo na Nuvem de Oort.[72] [76]
Cometas[editar | editar código-fonte]

Estes corpos originalmente ocupavam órbitas em regiões extremamente frias do Sistema Solar, mas perturbações gravitacionais diversas os direcionaram para o Sol. Ao se aproximar da estrela, o intenso calor provoca a sublimação dos compostos voláteis na superfície do cometa e os gases desprendidos formam uma cauda, que se torna brilhante quando interage com o vento solar, podendo estender-se por milhões de quilômetros. Seus componentes sólidos também são ejetados pela pressão gasosa, deixando uma trilha de poeira ao longo de sua órbita. Alguns cometas atravessam o periélio a uma distância segura, sobrevivendo ao calor e à radiação intensamente emitidos pelo Sol. Outros, no entanto, têm sua estrutura interna destroçada e se rompem, liberando inúmeros pedaços de gelo que logo se vaporizam, destruindo o cometa por completo.[77] [78]
Meteoroides, meteoros e meteoritos[editar | editar código-fonte]

Meteoro (ou estrela cadente) pertencente à chuva de meteoros Perseidas cruzando o céu. Note a coloração da luz emitida pela combustão.
Alguns meteoroides mais densos ou de maiores dimensões eventualmente conseguem atravessar a atmosfera, mesmo que fragmentados durante o processo, e chegar à superfície terrestre, passando a ser denominados meteoritos. Sua origem pode ser diversa, derivando de cometas, asteroides ou até mesmo de Marte ou da Lua.[nota 10] São classificados segundo quatro categorias principais, de acordo com sua estrutura e composição: condritos (mais comuns), acondritos, ferrosos e ferrosos-rochosos.[80] Um caso importante aconteceu na Rússia em 1908, quando um meteoroide causou uma imensa explosão sobre a Sibéria, no que ficou conhecido como evento de Tunguska, e provocou efeitos percebidos em várias partes do mundo.[81] A queda de meteoroides em áreas povoadas é um evento extremamente raro. Contudo, um caso notável aconteceu também na Rússia em 15 de fevereiro de 2013, quando uma imensa bola de fogo cruzou o céu no sul do país e fragmentos atingiram o solo próximo à cidade de Cheliabinsk, onde as ondas de choque provocadas pela explosão quebraram os vidros das janelas e sacudiram os prédios, deixando centenas de feridos.[82]
Dinâmica[editar | editar código-fonte]
Todos os planetas e demais corpos do Sistema Solar estão sob o domínio gravitacional do astro central, o Sol, razão pela qual descrevem uma órbita ao seu redor cujo formato é praticamente elíptico, conforme enunciado pelas três leis do movimento planetário de Kepler.[83] Uma grandeza denominada excentricidade define a configuração dessa elipse, que se apresenta mais achatada quando seu valor se aproxima de um (como acontece na órbita da maior parte dos cometas), ou praticamente circular quando tal número tende a zero (como é o caso da maior parte das órbitas dos planetas). Uma vez que o Sol se localiza em um dos focos dessa elipse, existe um ponto onde ocorre a máxima aproximação do corpo à estrela, o periélio, e outro oposto, em que atinge a máxima distância ao Sol, o afélio. Boa parte dos corpos do Sistema Solar, especialmente os planetas, orbita próximo a um mesmo plano denominado eclíptica, definido pelo plano de órbita da Terra, o qual se utiliza a princípio como referência para a inclinação orbital dos demais corpos. É importante notar ainda que, de acordo com a terceira lei de Kepler, o período de translação de um objeto é inversamente proporcional à distância deste objeto ao Sol, ou seja, quanto mais afastada é sua órbita, mais tempo leva para completar sua trajetória.[nota 11] Tal fato é uma consequência direta da lei da gravitação universal de Newton, que afirma que a força de atração do Sol é inversamente proporcional ao quadrado da distância, o que implica também na maior velocidade do corpo durante o periélio e o contrário no afélio.[nota 12] [84] A unidade mais conveniente utilizada para medir as distâncias entre os corpos do Sistema Solar é a unidade astronômica, correspondente à medida do semieixo maior da órbita terrestre (equivalente à distância média do planeta ao Sol), cujo valor é de aproximadamente 150 milhões de quilômetros.[nota 13] [85]

O movimento de rotação da Terra leva aproximadamente 24 horas para se completar.
Apesar de o Sol conter mais de 99% da massa do Sistema Solar, a maior parte do momento angular, que é a quantidade de movimento associada a um corpo que executa um movimento circular, está concentrada principalmente em Júpiter, que responde por mais de sessenta por cento desse movimento. De fato o momento angular do Sol é de apenas 0,3%, enquanto que os planetas gigantes respondem por mais de 99% dessa grandeza. A Terra e os outros planetas interiores têm momento angular desprezível comparado com o dos gigantes gasosos. Ainda permanece um mistério a razão pela qual o Sol perdeu seu momento angular já que, de acordo com as teorias de formação do Sistema Solar, o astro girava consideravelmente mais rápido mas, por algum motivo, perdeu uma fração significativa da energia de rotação. Acredita-se que o principal responsável por essa perda seja o vento solar que, ao libertar-se da estrela, leva consigo boa parte da energia do movimento.[88]
É importante observar que, embora a gravidade seja a força dominante no Sistema Solar, existem casos especiais em que o movimento dos corpos é determinado por outras forças adicionais. Grãos de poeira são suficientemente pequenos para serem afetados pela pressão de radiação solar, sendo literalmente varridos do sistema quando são ínfimos, de tamanho na ordem de micrômetros, ou forçados a executar órbitas espirais se um pouco maiores. Corpos cujas dimensões variam de alguns metros a poucos quilômetros, por razões diferentes, também sofrem o efeito da radiação solar, executando similarmente uma órbita espiralada.[89]
Variações orbitais[editar | editar código-fonte]

Logo, visto que o plano da órbita terrestre, a eclíptica, sofre variações, não é conveniente utilizá-lo como sistema de referência. Por isso criou-se o conceito de plano invariável, o plano imaginário perpendicular ao vetor resultante do momento angular de todos os corpos do Sistema Solar e que cruza seu baricentro. Uma vez que o movimento dos componentes do sistema não sofre nenhuma interferência externa, o vetor que determina esse plano permanece constante e independente da posição dos corpos.[91]
Até mesmo a teoria da relatividade de Einstein se mostra como um fator relevante na dinâmica dos corpos do Sistema Solar. Embora ínfima, a influência relativística é mais perceptível na órbita de Mercúrio, o planeta com maior velocidade orbital. As irregularidades detectadas na precessão de seu periélio permaneceram um mistério para o qual foram propostas diversas respostas, como a existência de Vulcano, um planeta hipotético entre Mercúrio e o Sol que nunca foi encontrado. Somente anos depois Einstein descobriu o motivo da anomalia.[90]
Embora a massa do Sol seja consideravelmente maior que a dos demais planetas, esses corpos são capazes de influenciar o movimento da própria estrela. Em razão do movimento planetário, o baricentro do Sistema Solar não se localiza exatamente no centro do Sol, mas varia de acordo com a posição dos corpos que orbitam ao seu redor. O maior dos oito planetas, Júpiter, é o principal responsável pela mudança de posição do centro de massa que, por vezes, é deslocado para fora do próprio Sol. Em conjunto, os planetas provocam puxões gravitacionais na estrela, fazendo-a oscilar ligeiramente enquanto a orbitam.[92] [93]
Efeitos das interações gravitacionais nos corpos[editar | editar código-fonte]
Ver também: Campo gravitacional e Ressonância orbital
Os corpos do Sistema Solar estão sujeitos a forças gravitacionais e, uma vez que não são objetos perfeitamente rígidos, suas formas e estruturas são alteradas com esse processo. A atração gravitacional entre dois corpos, especialmente quando apresentam grande massa, dá origem à força de maré, que provém da diferença de potencial gravitacional entre pontos distintos num objeto. Além da intensidade de tal força, o grau de deformação dos corpos depende, ainda, de sua constituição interna e de sua velocidade de rotação que, quanto mais elevada, mais promove o achatamento de um objeto. A interação gravitacional desencadeia outros processos que resultam na evolução de um determinado sistema orbital, em geral planeta-satélite. Estas forças recíprocas provocam a dissipação da energia do sistema alterando, a longo prazo, a órbita do próprio satélite e a velocidade de rotação de ambos os corpos.[94]Dependendo da distância entre o planeta e seu satélite, a força de maré pode atingir níveis dramáticos. Isso acontece quando a órbita de determinado corpo ultrapassa o limite de Roche, além do qual a força exercida pelo planeta sobre o satélite é tão grande que o último não consegue se manter coeso por sua própria força gravitacional e se desintegra. Pelo mesmo motivo, a matéria existente nessa região é incapaz de se agregar para formar um novo corpo, sendo essa a mais provável origem dos sistemas de anéis dos planetas gigantes, já que todos os anéis de Júpiter e Netuno e os principais de Urano e Saturno se encontram além desse limite. A Lua localiza-se vinte vezes mais distante que o limite de Roche no nosso planeta, mas se o ultrapassasse, a Terra possivelmente teria um anel planetário.[95] [96] [97]

Pluma vulcânica com 160 km (100 milhas) de altitude, resultante da erupção do vulcão Loki Patera, em Io. Esse satélite de Júpiter é um dos corpos com maior atividade vulcânica do Sistema Solar.
O fato de tantos satélites apresentarem rotação síncrona não é mera coincidência, mas consequência da interação gravitacional decorrente do acoplamento de maré. A rotação dos dois corpos sofre pequenas variações até que se atinja a ressonância 1:1, quando o processo se completa. No sistema Terra-Lua, este processo está apenas parcialmente completo, já que somente a Lua possui rotação síncrona, ao contrário do sistema Plutão-Caronte, que sempre mostram a mesma face um para o outro.[100]
Em sistemas mais complexos, o fenômeno da ressonância orbital aliado às forças de maré provoca o aquecimento interno de um satélite natural, por fricção entre suas camadas. Tal fato deve-se ao diferencial de forças exercidas simultaneamente pelo planeta e pelos outros corpos ressonantes. Um exemplo desse fenômeno é o satélite jupiteriano Io, cujas camadas internas estão em constante atrito por conta da imensa força gravitacional do gigante gasoso em oposição à influência dos outros satélites galileanos ressonantes, com os quais ocorrem sucessivos encontros. Como resultado, o calor gerado no processo mantém uma contínua atividade vulcânica em Io, apesar do seu tamanho relativamente reduzido. Outros exemplos notáveis desse fenômeno conhecido como aquecimento de maré incluem o satélite jupiteriano Europa e a lua saturniana Encélado.[101] [102]
Movimento aparente dos planetas[editar | editar código-fonte]
Mercúrio e Vênus, os planetas inferiores, são os únicos cujas órbitas se localizam mais perto do Sol que a Terra, razão pela qual se mostram sempre próximos do astro, oscilando entre os seus lados e tornando-se visíveis somente pouco antes do pôr do sol ou algumas horas antes da alvorada.[104] Por vezes esses planetas passam entre a Terra e o Sol, sendo esse momento denominado conjunção inferior. Prosseguindo sua órbita, o planeta move-se para oeste da estrela, tornando-se visível, agora, antes do nascer do sol no horizonte leste. O ângulo entre o planeta e o Sol visto da Terra (denominado elongação) sofre um acréscimo a cada dia até um certo ponto, quando ocorre a elongação máxima a oeste, altura em que aparentemente o planeta está mais afastado do Sol. Progressivamente sua elongação vai diminuindo novamente até que este passe atrás do Sol, o que caracteriza uma conjunção superior. Seguindo sua trajetória, começa então a surgir agora do lado leste da estrela, tornando-se visível logo após o pôr do sol. Mais uma vez sua elongação cresce a cada dia e atinge o valor máximo a leste. Posteriormente este ângulo volta a decrescer, até a ocorrência de uma nova conjunção inferior, repetindo-se o ciclo.[105]
De acordo com seu movimento em torno do Sol, Mercúrio e Vênus passam por um ciclo de fases, razão pela qual seu brilho e tamanho aparente variam consideravelmente consoante sua distância e posição em relação à Terra. Na conjunção inferior, por exemplo, o tamanho aparente do planeta é máximo, mas o brilho é mínimo. Por vezes o alinhamento entre o planeta, o Sol e a Terra, é perfeito, caracterizando um trânsito, ou seja, o planeta pode ser observado cruzando o disco solar. Os trânsitos de Mercúrio são relativamente comuns, mas os de Vênus são bem mais raros, sendo que o último deste século ocorreu em 2012.[106]
Durante a maior parte desse período, os planetas superiores movem-se em direção oeste-leste no céu, descrevendo o que se denomina movimento direto. Contudo, pouco antes de alcançar a oposição, o planeta faz um movimento aparente de loop e, por um certo período, passa a se mover em direção oposta, o que caracteriza o movimento retrógrado aparente. Tal fato ocorre devido às diferenças entre as órbitas da Terra e a dos corpos mais além. Uma vez que nosso planeta possui maior velocidade orbital comparada aos planetas superiores, a mudança de posição cria a ilusão de que tais corpos estão ficando para trás, produzindo seu movimento aparente em direção oposta.[108] [109]
Observação e exploração[editar | editar código-fonte]
Por milênios a humanidade não reconheceu a existência do Sistema Solar. Contudo, ainda nos séculos antes de Cristo, gregos e babilônios foram os primeiros a utilizar a matemática para tentar prever a posição das "estrelas errantes" que apresentavam um movimento irregular.[110] Embora não existam registros escritos, acredita-se terem sido os pitagóricos, durante o século V a.C., a introduzir a noção de que a Terra possuía um formato esférico e que os demais corpos orbitavam à sua volta.[111] Uma das primeiras teorias para explicar o movimento planetário foi criada pelo filósofo grego Aristóteles e propunha a existência de várias esferas cristalinas que giravam ao redor da Terra. Em cada uma delas estaria incrustado um corpo celeste, como o Sol, a Lua, os planetas e o conjunto das estrelas fixas. A última esfera seria a do "movimento primordial", cuja rotação seria transmitida de uma esfera para outra, promovendo, assim, o movimento de todos os corpos. Ajustando-se as velocidades angulares dessas esferas seria possível explicar o movimento planetário.
Esquema do modelo de epiciclos de Ptolomeu, em que o planeta girava em torno de um ponto imaginário que, por sua vez, girava em torno da Terra. Note que o centro da órbita localiza-se em um ponto imaginário chamado deferente, criado para explicar as irregularidades no movimento planetário.
A astronomia moderna[editar | editar código-fonte]
Por mais de mil anos praticamente não houve uma evolução do conhecimento astronômico no ocidente, prevalecendo, portanto, o modelo geocêntrico. Apenas no século XVI o astrônomo polonês Nicolau Copérnico veio a publicar em seu livro Das Revoluções das Esferas Celestes que todos os planetas, inclusive a Terra, orbitavam o Sol, o que ficou conhecido como modelo heliocêntrico. Tal teoria afirmava também que somente a Lua girava ao redor do nosso planeta, que as estrelas eram objetos muito distantes que não orbitavam o Sol e que a Terra tinha um movimento próprio de rotação que durava 24 horas, o que produzia a deslocação aparente das estrelas no céu na direção oposta. Por conseguinte, o movimento retrógrado e a alteração cíclica de brilho dos planetas foram explicados como sendo simples consequências da variação da distância entre a Terra e esses corpos à medida que seguem sua trajetória. Acredita-se que a maior parte das obras de Copérnico foi publicada somente no fim de sua vida por receio que o próprio tinha de ser ridicularizado e de suas teorias serem desaprovadas, principalmente pela Igreja Católica. Suas ideias permaneceram pouco conhecidas mesmo após cerca de cem anos de seu falecimento, quando uma sucessão de avanços científicos levou à completa descrença no modelo geocêntrico e à criação de uma visão moderna sobre a astronomia, o que ficou conhecido como Revolução Copernicana.[113]O astrônomo dinamarquês Tycho Brahe fez importantes contribuições para o desenvolvimento da astronomia moderna. Com diversos instrumentos criados por ele, efetuou numerosas observações e reuniu dados detalhados sobre a posição dos planetas, especialmente de Marte, a partir do seu próprio observatório, Uranienborg, com uma impressionante precisão. Além disso, observou uma supernova que explodiu em 1572 e provou que ela se encontrava muito longínqua, assim como as estrelas, e demonstrou ainda que um cometa que passara em 1577 situava-se bem mais distante da Terra que a Lua, contrariando a teoria aristotélica de acordo com a qual tais corpos surgiriam a partir de fenômenos atmosféricos.[114]
Johannes Kepler era assistente de Brahe em seu observatório. O jovem astrônomo acreditava firmemente no modelo heliocêntrico, ao contrário do seu superior que temia ainda que Kepler fizesse descobertas que ofuscassem seu próprio mérito, pelo que lhe mostrava somente parte dos dados obtidos em suas observações. Visando ocupar Kepler enquanto trabalhava em suas teorias sobre o Sistema Solar, Brahe entregou-lhe todas as informações observacionais de Marte e o incumbiu da difícil tarefa de entender as irregularidades no movimento do planeta vermelho. O modelo de Copérnico previa que as órbitas eram perfeitamente circulares, mas Kepler chegou à conclusão de que isso estava errado e que, na verdade, estas eram achatadas, formando uma figura geométrica chamada elipse.[115]
As grandes descobertas[editar | editar código-fonte]

Ilustração do modelo heliocêntrico produzida em 1646 por Andreas Cellarius. Note os satélites de Júpiter (os quatro pequenos círculos em volta do planeta à direita), descobertos por Galileu, além da Lua ao redor da Terra.
No mesmo ano da morte de Galileu, nasceu Isaac Newton, o cientista que viria a revolucionar o mundo da ciência ao unificar a astronomia à física. Além das três leis sobre moção dos objetos, descobriu a força que rege o movimento dos corpos no Universo: a gravidade. A grande ideia de Newton surgiu a partir da simples observação de uma maçã caindo da árvore. Estudando esse movimento, percebeu que era acelerado e que, portanto, uma força agia sobre a fruta aumentando sua velocidade durante a queda. Então, imaginou que se a árvore fosse duas vezes mais alta, a gravidade continuaria agindo sobre ela, provocando a queda da maçã em direção ao chão. Concluiu que o campo de ação dessa força provavelmente se estenderia por uma distância muito maior e chegaria até a Lua, fazendo com que o satélite natural ficasse ligado gravitacionalmente à Terra. Em seus estudos, logo chegou à conclusão de que "todo objeto no Universo atrai outro objeto com uma força que age na linha que une o centro dos dois corpos que é proporcional ao produto das massas desses dois objetos e inversamente proporcional ao quadrado da distância entre esses dois objetos", definindo a lei da gravitação universal.[nota 12] [117]
A melhoria da qualidade dos equipamentos de medição e observação levou a que se obtivessem registros cada vez mais precisos que permitiam estudar em detalhes a dinâmica dos corpos do Sistema Solar. Ainda no século XVIII tentou-se estimar a distância da Terra ao Sol através da medição da paralaxe de Mercúrio e de Vênus quando estes (em ocasiões diferentes) cruzavam o disco solar. Apesar de o objetivo primário não ter sido alcançado, foi constatada uma camada brilhante ao redor de Vênus quando este se aproximava do Sol, concluindo-se que o planeta possuía uma atmosfera. Ainda no mesmo período, Edmund Halley estudou relatos de cometas passados e percebeu que os elementos orbitais de alguns deles eram muito parecidos; compreendeu que, na verdade, se tratava do mesmo corpo que orbitava o Sol, conseguindo assim prever seu retorno. Já em 1781, William Herschel encontrou um corpo celeste que pensou ser um novo cometa, constatando seu movimento ao longo de dias. Somente após algumas semanas, depois de terem sido efetuados cálculos minuciosos, houve a confirmação de que se tratava na realidade de um novo planeta, posteriormente denominado Urano. Dois anos depois Herschel descobriu dois de seus maiores satélites (Titânia e Oberon). Já no fim do século, suspeitou-se da existência de um outro planeta entre Marte e Júpiter, quando um grupo de astrônomos decidiu realizar observações sistemáticas para encontrá-lo. Por mero acaso, encontraram Ceres, o primeiro asteroide descoberto, seguido pelo asteroide Pallas pouco tempo depois, ambos de dimensões demasiado reduzidas para serem considerados planetas.[118]

Desenhos de Richard Carrington de manchas solares.
Ainda em 1693, Halley descobriu que a Lua estava lentamente se afastando da Terra enquanto ganhava velocidade e à medida que a rotação da Terra era desacelerada. As observações de Marte mostraram as variações sazonais de suas calotas polares, das regiões escuras em sua superfície e de sua atmosfera, levando à crença de que poderia abrigar alguma forma de vida, especialmente vegetal. Através de telescópios, Júpiter revelava ser um planeta extremamente turbulento, exibindo tempestades circulares que surgiam e desapareciam com relativa frequência, excetuando a típica Grande Mancha Vermelha. Constatou-se ainda a rotação diferencial de sua atmosfera e as distintas direções dos ventos nas bandas do planeta. A partir de 1837, foram sendo descobertas novas faixas e lacunas no sistema de anéis de Saturno e sua interação com os satélites naturais do planeta. A composição dos anéis permanecia uma incógnita, propondo-se, por exemplo, que seria sólida ou líquida, mas em 1857 James Clerk Maxwell provou matematicamente que tal constituição não era possível, sugerindo, entretanto, serem formados por pequenos grãos de poeira e gelo. Em relação a Urano, Herschel conseguiu, apesar de sua distância, descobrir a elevada inclinação axial do planeta.[120] A órbita desse gigante gasoso apresentava perturbações que sugeriram a existência de outro planeta além de Urano. Então, Le Verrier e John Couch Adams, por meio de cálculos matemáticos, conseguiram prever onde estaria este corpo ainda desconhecido, vindo a constatar-se através de observações realizadas com recurso a telescópios que de fato se tratava de um novo planeta, Netuno.[121]
Os avanços tecnológicos a partir do século XX permitiram sanar várias questões sobre os corpos do nosso sistema planetário. Observações por meio de radares revelaram o período de rotação de Mercúrio e de Vênus, além das características peculiares da atmosfera deste último. A análise do espectro dos planetas gigantes possibilitou a constatação de suas composições gasosas, além de permitir estimar suas estruturas internas. Emissões de rádio mostraram que Júpiter era envolvido por um intenso campo magnético, enquanto em Saturno técnicas de observação evidenciaram as altíssimas velocidades dos ventos em suas camadas atmosféricas superiores. A descoberta dos dois gigantes de gelo nas regiões mais afastadas do Sistema Solar levou à suspeita de que poderiam existir outros planetas além de Netuno. Várias buscas foram efetuadas até que, em 1930, Clyde Tombaugh detectou um novo corpo celeste, Plutão, cujo tamanho era muito menor que o anteriormente imaginado. Contudo, foi considerado como um novo planeta até 2006, quando a União Astronômica Internacional propôs uma nova definição para essa classe de corpos, na qual Plutão não se enquadra.[122]
Sondas espaciais[editar | editar código-fonte]
Ver também: Cronologia dos satélites artificiais e sondas espaciais, Lista de objetos artificiais na Lua, Cronologia das missões a Marte e Lista de objetos artificiais em Vênus
Ver também: Linha do tempo da exploração espacial
O Sistema Solar passou a ser conhecido com detalhes sem precedentes a partir do momento em que sondas espaciais começaram a reunir dados dos diversos corpos que o compõem. A primeira sonda a escapar do campo gravitacional terrestre foi a soviética Luna 1, em 1959, cujo objetivo principal era a colisão com o solo lunar, o que não aconteceu por problemas técnicos. Em vez disso, ela passou a 6 400 quilômetros de distância do satélite, e logo o contato foi perdido.[123] No mesmo ano, a Luna 2 cumpriu com sucesso a missão, tornando-se o primeiro objeto feito pelo Homem a atingir a superfície de outro corpo celeste.[124] Ainda em 1959, a sonda Luna 3 fez as primeiras 29 fotografias do lado oculto da Lua, que mostraram poucas planícies vulcânicas em comparação com o hemisfério já conhecido, levantando dúvidas acerca das teorias sobre a evolução lunar.[125]Três anos depois, após diversas tentativas feitas por americanos e soviéticos, a sonda Mariner 2, dos Estados Unidos, foi a primeira a realizar uma passagem bem sucedida próximo a outro planeta, no caso Vênus. Com essa missão, descobriu-se a rotação retrógrada e as altíssimas temperaturas na superfície venusiana.[126] Em 1966, a sonda soviética Venera 3 foi a primeira a atingir a superfície de outro planeta. Contudo, o contato foi perdido pouco antes de a sonda entrar na atmosfera venusiana, seu principal alvo de estudo.[127] Um ano antes a sonda Mariner 4 havia feito a primeira aproximação a Marte, enviando várias fotos do planeta vermelho.[128]
A Pioneer 10 foi a primeira a voar além da órbita de Marte e a visitar um dos gigantes gasosos, passando por Júpiter em 1983 (onze anos após seu lançamento), além de ser igualmente pioneira na utilização de energia nuclear como fonte de eletricidade.[129] No ano seguinte a Pioneer 11 fez outra passagem por Júpiter e posteriormente realizou uma aproximação a Saturno, proporcionando muitas descobertas sobre seus anéis, seus satélites e sua constituição. Cada uma dessas duas sondas do programa Pioneer, que ainda prosseguem seu trajeto para o espaço interestelar, contém uma placa com a descrição da nave, dos seres humanos e da localização do Sistema Solar, no caso de serem encontradas por alguma forma de vida inteligente.[130]
Uma das mais notáveis missões para os planetas gigantes, no entanto, é o programa Voyager. Valendo-se de uma configuração particularmente favorável dos mesmos, a NASA projetou duas sondas para visitar todos de uma só vez. O encontro da Voyager 1 com Júpiter, em 1979, mostrou diversos aspectos do planeta e de suas luas que ainda eram desconhecidos, como seu sistema de anéis e a atividade vulcânica no satélite natural Io. No ano seguinte passou por Saturno e, além dos diversos satélites e anéis descobertos, estudou a espessa atmosfera de Titã, composta principalmente de nitrogênio. Contudo, um desvio inesperado não permitiu que visitasse os dois outros planetas gigantes. A missão se estendeu além do esperado e, em 1998, a sonda se tornou o objeto mais distante feito pelo homem, continuando a enviar dados sobre os confins do Sistema Solar até hoje.[131] Lançada no mesmo ano que sua companheira, a Voyager 2 também passou por Júpiter e Saturno, fornecendo novas fotografias e registros dos planetas e seus satélites. Seguindo sua rota, a sonda chegou em Urano e descobriu, por exemplo, seu sistema de anéis e diversos satélites. A gravidade do planeta direcionou a Voyager 2 para Netuno, tornando-se a única sonda a aproximar-se dos dois gigantes de gelo. A Voyager 2 continua operacional e está agora nos limites da heliosfera, em uma direção distinta da Voyager 1. Cada uma delas contém um disco de ouro no qual estão gravados vários sons naturais da Terra, além de noventa minutos de música, 115 imagens e saudações em mais de sessenta idiomas.[132]
Muitas outras sondas foram enviadas para diversos destinos no Sistema Solar e várias se encontram ainda em funcionamento. A MESSENGER, por exemplo, foi a primeira a ser colocada em órbita de Mercúrio.[133] Em Marte, os satélites 2001 Mars Odyssey e Mars Reconnaissance Orbiter orbitam o planeta, enquanto os veículos exploradores Spirit, Opportunity e mais recentemente o Curiosity, percorrem a superfície do planeta.[134] A sonda Dawn foi enviada ao Cinturão de Asteroides e, após passar por Vesta em 2012, está a caminho do planeta anão Ceres, prevendo-se que alcance este objetivo em 2015.[135] Para Júpiter foi enviada a sonda espacial Juno, que deve entrar em sua órbita no ano 2016 para colher dados do maior planeta do Sistema Solar.[136] A Cassini foi lançada em 1997, chegou a Saturno sete anos depois, altura em que entrou em órbita do planeta, e ainda está em funcionamento. Carregava consigo outra sonda, a Huygens, que pousou na superfície de Titã, o maior satélite do planeta. As imagens enviadas pela Cassini, ricas em detalhes, revelavam as características dos satélites, dos anéis e da atmosfera saturniana.[137] Por fim, a sonda New Horizons, lançada em 2006, está programada para chegar a Plutão em julho de 2015, sendo a primeira nave a visitar o planeta anão. Posteriormente estudará os objetos do Cinturão de Kuiper até o fim de sua missão, em 2026.[138]

"Retrato de família". Mosaico feito pela sonda MESSENGER, que está próxima a Mercúrio, captura os planetas do Sistema Solar.
Limites e localização[editar | editar código-fonte]
É difícil estabelecer uma fronteira que defina onde termina o Sistema Solar e começa o espaço interestelar. Algumas abordagens possíveis, como a intensidade da luz e da gravidade do Sol, não são viáveis. Contudo, chegou-se à conclusão de que a melhor forma de delimitar o Sistema Solar é estipular onde cessa a influência do vento solar (que forma uma área semelhante a uma bolha, chamada heliosfera, na qual está contida a maior parte dos componentes do sistema) por entre a nuvem de matéria do meio interestelar. No entanto, a esfera de influência gravitacional do Sol, com raio de cerca de duzentas mil unidades astronômicas, se estende para muito além da heliosfera, abrangendo a região habitada pelos corpos da Nuvem de Oort.[139] [140]Heliosfera[editar | editar código-fonte]

O vento solar consiste em uma corrente de partículas, primariamente prótons e elétrons, além de partículas alfa e outras em quantidade reduzida, que deixam o Sol em todas as direções com velocidades superiores a 1,5 milhão de quilômetros por hora. O motivo pelo qual essas partículas são ejetadas com velocidades tão grandes ainda é desconhecido.[142] O vento solar não se propaga uniformemente, mas em fluxos de maior ou menor intensidade, como se fossem ondas que permeiam toda a heliosfera. Esses fluxos que formam a corrente heliosférica difusa são originados pelas mudanças periódicas da polaridade do Sol a cada onze anos aproximadamente, que alteram a propagação dessas partículas através de todo o Sistema Solar.[143] [144] Por vezes o campo magnético em certas regiões do Sol se torna tão intenso a ponto de conseguir aprisionar íons e arrancá-los da coroa solar, arremessando-os posteriormente para longe da estrela na forma de uma ejeção de massa coronal. O vento solar, por si só, interage com os corpos do Sistema Solar e dá origem a diversos fenômenos, como o brilho das caudas cometárias e as notáveis auroras polares. Em eventos mais intensos, nos quais uma ejeção de massa coronal é direcionada para a Terra, ocorrem as tempestades geomagnéticas.[145]
Quando a matéria proveniente do Sol passa a interagir com a matéria interestelar, sua velocidade é drasticamente reduzida a valores subsônicos, formando uma onda de choque terminal[nota 15] onde o material é comprimido e sua temperatura aumenta.[146] Até o presente momento somente duas sondas conseguiram chegar a essa área, a Voyager 1 e a Voyager 2, cujas leituras indicaram que a distância dessa região ao Sol era de 94 e 83,7 unidades astronômicas[nota 3] , respectivamente; a diferença provavelmente se deve à forma assimétrica da bolha, que possui menor volume em sua porção sul.[147] As partículas, então, continuam seu trajeto lentamente percorrendo uma região denominada heliosheath, onde o vento continua aquecido e avança até um certo ponto, quando não mais consegue vencer a pressão imposta pela interação com o meio interestelar. Esse limite é chamado de heliopausa e circunscreve o máximo alcance do vento solar no espaço. Nessa região, a colisão do vento solar com as partículas do meio interestelar resulta num efeito denominado arco de choque.[143]
Contexto local[editar | editar código-fonte]
A estrela mais próxima do Sistema Solar é a anã vermelha Proxima Centauri, uma das componentes do sistema estelar triplo Alpha Centauri. A magnitude aparente combinada deste sistema, essencialmente definida pela Alpha Centauri A e, em menor grau, pela Alpha Centauri B, resulta numa das estrelas mais brilhantes do céu, visível no hemisfério sul, encontrando-se a uma distância média de 4,3 anos-luz de nós. Orbitando a segunda maior constituinte, Alpha Centauri B, que é parecida com o Sol em tamanho e brilho, foi descoberto um planeta com dimensões um pouco maiores que as da Terra, sendo, portanto, o mais próximo planeta extrassolar conhecido.[154] Outras estrelas relativamente próximas são a estrela de Barnard, uma anã vermelha muito pequena e visível somente com telescópio, mas com um notável movimento próprio, a cerca de 5,9 anos-luz de distância, e Sirius, a mais brilhante vista da Terra (depois do Sol), a 8,6 anos-luz. Em geral as proximidades do Sistema Solar são pouco povoadas por estrelas, a maior parte delas com dimensões e brilho menores que os do Sol e constituintes de sistemas binários ou múltiplos. Num raio de treze anos-luz a partir do centro do Sistema Solar existem 25 sistemas estelares e, segundo estimativas, até 32 anos-luz de distância poderão vir a ser confirmados alguns que não foram ainda descobertos, por causa de seu brilho extremamente fraco.[155] [156]
De acordo com os dados obtidos pelo satélite artificial Hipparcos, colocado em órbita para medir a distância e o movimento das estrelas próximas, concluiu-se que a cada um milhão de anos, pelo menos doze estrelas em média passam a uma distância menor que um parsec (equivalente a 3,26 anos-luz) do Sol. Baseado em estimativas, acredita-se que, durante toda a existência do Sistema Solar, a menor distância que uma estrela passará do Sol será de aproximadamente 900 unidades astronômicas[nota 3] , bem além da heliosfera. Contudo, tal encontro resultaria na perturbação do movimento dos corpos da Nuvem de Oort, que seriam lançados em direções aleatórias, podendo provocar, inclusive, uma chuva de cometas que bombardearia a Terra e os demais planetas e que se estenderia por mais de dois milhões de anos.[156]
Contexto galáctico[editar | editar código-fonte]
O Sistema Solar faz parte de uma galáxia espiral denominada Via Láctea. O Sol está localizado entre 26 e 28 mil anos-luz do núcleo galáctico e a cerca de vinte anos-luz acima do plano galáctico, na parte mais interna de uma formação conhecida como Braço de Órion que, na verdade, é uma mera conexão entre duas estruturas mais massivas, o Braço de Sagitário e o Braço de Perseu. Por nos encontrarmos dentro da galáxia, vemos seu plano como uma faixa brilhante percorrendo todo o céu, cujo centro se localiza na direção da constelação do Sagitário. A Via Láctea possui cerca de cem mil anos-luz de diâmetro e pelo menos 200 bilhões de estrelas, embora estimativas recentes estimem mais de 400 bilhões desses objetos[nota 1] , além de milhares de aglomerados estelares, nebulosas e inúmeros planetas. Nos braços da galáxia predominam as estrelas mais jovens, matéria interestelar e nebulosas difusas, enquanto na parte central existem majoritariamente aglomerados de estrelas velhas.[157] A galáxia como um todo apresenta um movimento de rotação em sentido horário quando vista da parte norte, mas com períodos que diferem de acordo com a distância ao centro. Percorrendo esse trajeto, o Sistema Solar viaja a cerca de 828 mil quilômetros por hora, por isso são necessários cerca de 225 milhões de anos para completar uma volta, o que caracteriza um ano galáctico. Estima-se que o Sol completou esse trajeto somente vinte vezes desde sua formação.[158] [159] [156]Nossa galáxia pertence a um grupo esparso chamado de Grupo Local, composto por três galáxias dominantes e cerca de trinta outras de menores dimensões. Dentre todas, a mais extensa é a Galáxia de Andrômeda, que se localiza a cerca de 2,9 milhões de anos-luz de nós, porém, de acordo com estudos, a Via Láctea possui maior massa. A mais próxima é a Galáxia Anã do Cão Maior, a 42 mil anos-luz do centro galáctico, seguida pela Galáxia Anã Elíptica de Sagitário. A Grande e a Pequena Nuvem de Magalhães são as maiores dentre as galáxias satélites da Via Láctea.[157] [160]
Futuro[editar | editar código-fonte]
O Sol realiza a fusão do hidrogênio em hélio para produzir energia e se manter estável. Enquanto isso acontece, diz-se que a estrela está na sequência principal, uma das fases de sua evolução estelar. Em seu núcleo, a pressão exercida pela liberação energética provocaria a expansão da estrela, mas é contrabalançada pela força da gravidade, que age na direção oposta, mantendo assim o equilíbrio. Ao longo do tempo, contudo, o consumo de hidrogênio faz as taxas das reações diminuírem e, para retornar ao equilíbrio, o núcleo contrai-se e se torna mais quente. Esse processo provoca o gradual aquecimento da estrela ao longo de bilhões de anos,[nota 1] mantendo-se estável. No entanto, o Sol passará por grandes mudanças quando o hidrogênio, seu combustível, tiver se exaurido por completo.[161]Colisões planetárias[editar | editar código-fonte]
Uma das questões debatidas entre os cientistas refere-se à estabilidade do Sistema Solar. Sabe-se que os planetas exercem atração gravitacional entre si e, portanto, suas órbitas não são perfeitamente estáveis. Uma vez que essas variações são cumulativas, o Sistema Solar poderá entrar em um período caótico no qual a relativa estabilidade existente hoje não mais prevalecerá. Os cenários acerca do movimento planetário a longo prazo são extremamente difíceis de prever, por conta da enorme quantidade de objetos e de fatores envolvidos. Não obstante, estima-se que pelo menos nos próximos quarenta milhões de anos os planetas devam ocupar aproximadamente suas órbitas atuais. Num futuro distante a órbita de Mercúrio, por exemplo, tenderá a se tornar cada vez mais excêntrica, levando o planeta a possivelmente cruzar com a órbita de Vênus ou mesmo com a da Terra, perturbando a trajetória de todos os planetas interiores e propiciando, de acordo com cenários projetados, uma colisão de Mercúrio com Vênus em 3,5 bilhões de anos[nota 1] ou a ejeção do primeiro para fora do Sistema Solar. Essas perturbações podem causar, ainda, uma colisão entre o nosso planeta e Mercúrio ou Marte em alguns bilhões de anos[nota 1] , o que varreria completamente qualquer forma de vida ainda presente na Terra. Os gigantes gasosos, por outro lado, não devem sofrer mudanças significativas em suas órbitas devido a esse processo, por conta, sobretudo, de suas massas consideravelmente superiores às dos planetas internos.[162] [163] [164]Colisão galáctica[editar | editar código-fonte]
Ver também: Colisão de galáxias

Início da colisão das galáxias tal como seria observada a partir da Terra, daqui a quatro bilhões de anos[nota 1] .
Gigante vermelha[editar | editar código-fonte]


Em um dos estágios finais de sua existência o Sol, devido à instabilidade em seu núcleo, deverá ejetar suas camadas exteriores, que brilharão durante alguns milhares de anos e formarão uma esplendorosa nebulosa planetária semelhante à Nebulosa de Hélix.
Nenhum comentário:
Postar um comentário